An explicit construction of a sequence of codes attaining the Tsfasman-Vladut-Zink bound: The first steps

نویسندگان

  • Conny Voss
  • Tom Høholdt
چکیده

We present a sequence of codes attaining the Tsfasman–Vlăduţ–Zink bound. The construction is based on the tower of Artin–Schreier extensions recently described by Garcia and Stichtenoth. We also determine the dual codes. The first steps of the constructions are explicitely given as generator matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transitive and Self-dual Codes Attaining the Tsfasman-vladut-zink Bound

A major problem in coding theory is the question if the class of cyclic codes is asymptotically good. In this paper we introduce as a generalization of cyclic codes the notion of transitive codes (see Definition 1.4 in Section 1), and we show that the class of transitive codes is asymptotically good. Even more, transitive codes attain the Tsfasman-Vladut-Zink bound over Fq, for all squares q = ...

متن کامل

Asymptotically Good Convolutional Codes

In this paper, we construct new sequences of asymptotically good convolutional codes (AGCC). These sequences are obtained from sequences of transitive, self-orthogonal and self-dual algebraic geometry (AG) codes attaining the Tsfasman-Vladut-Zink bound. Furthermore, by applying the techniques of expanding, extending, puncturing, direct sum, the 〈u|u+ v〉 construction and the product code constru...

متن کامل

ON CURVES OVER FINITE FIELDS by

— In these notes we present some basic results of the Theory of Curves over Finite Fields. Assuming a famous theorem of A. Weil, which bounds the number of solutions in a finite field (i.e., number of rational points) in terms of the genus and the cardinality of the finite field, we then prove several other related bounds (bounds of Serre, Ihara, Stohr-Voloch, etc.). We then treat Maximal Curve...

متن کامل

Source and channel rate allocation for channel codes satisfying the Gilbert-Varshamov or Tsfasman-Vladut-Zink bounds

We derive bounds for optimal rate allocation between source and channel coding for linear channel codes that meet the Gilbert-Varshamov or Tsfasman-Vlădut-Zink bounds. Formulas giving the high resolution vector quantizer distortion of these systems are also derived. In addition, we give bounds on how far below channel capacity the transmission rate should be for a given delay constraint. The bo...

متن کامل

A low-complexity algorithm for the construction of algebraic-geometric codes better than the Gilbert-Varshamov bound

Since the proof in 1982, by Tsfasman Vlăduţ and Zink of the existence of algebraic-geometric (AG) codes with asymptotic performance exceeding the Gilbert–Varshamov (G–V) bound, one of the challenges in coding theory has been to provide explicit constructions for these codes. In a major step forward during 1995–1996, Garcia and Stichtenoth (G–S) provided an explicit description of algebraic curv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 43  شماره 

صفحات  -

تاریخ انتشار 1997